👨‍💼 CUSTOMER CARE NO +918468865271

⭐ TOP RATED SELLER ON AMAZON, FLIPKART, EBAY & WALMART

🏆 TRUSTED FOR 10+ YEARS

  • From India to the World — Discover Our Global Stores

🚚 Extra 10% + Free Shipping? Yes, Please!

Shop above ₹5000 and save 10% instantly—on us!

THANKYOU10

Fundamentals of Nonparametric Bayesian Inference: 44 (Cambridge Series in Statistical and Probabilistic Mathematics, 44)

Sale price Rs.5,695.00 Regular price Rs.7,119.00
Tax included


Genuine Products Guarantee

We guarantee 100% genuine products, and if proven otherwise, we will compensate you with 10 times the product's cost.

Delivery and Shipping

Products are generally ready for dispatch within 1 day and typically reach you in 3 to 5 days.

Get 100% refund on non-delivery or defects

On Prepaid Orders

Author: Ghosal, Subhashis

Brand: Cambridge University Press

Edition: 1

Binding: Hardcover

Number Of Pages: 646

Release Date: 26-06-2017

Part Number: 9780521878265

Details: Product Description
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.
Review
'Probabilistic inference of massive and complex data has received much attention in statistics and machine learning, and Bayesian nonparametrics is one of the core tools. Fundamentals of Nonparametric Bayesian Inference is the first book to comprehensively cover models, methods, and theories of Bayesian nonparametrics. Readers can learn basic ideas and intuitions as well as rigorous treatments of underlying theories and computations from this wonderful book.' Yongdai Kim, Seoul National University

'Bayesian nonparametrics has seen amazing theoretical, methodological, and computational developments in recent years. This timely book gives an authoritative account of the current state of the art by two leading scholars in the field. They masterfully cover all major aspects of the discipline, with an emphasis on asymptotics, and achieve the rare feat of being simultaneously broad and deep, while preserving the utmost mathematical rigor. This book is, without doubt, a must-read for Ph.D. students and researchers in statistics and probability.' Igor Prünster, Università Commerciale Luigi Bocconi, Milan

'Worth waiting for, this book gives a both global and precise overview on the fundamentals of Bayesian nonparametrics. It will be extremely valuable as a textbook for Masters and Ph.D. students, along with more experienced researchers, as the authors have managed to gather, link together, and present with great clarity a large part of the major advances in Bayesian nonparametric modeling and theory.' Judith Rousseau, Université Paris-Dauphine

'This book can serve as a textbook for a graduate course on Bayesian nonparametrics. It can also be used as a reference book for researchers in both statistics and machine learning, as well as application areas such as econometrics and biostatistics.' Yuehua Wu, MathSciNet
Book Description
Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.
About the Author
Subhashis Ghosal is Professor of Statistics at North Carolina State University. His primary research interest is in the theory, methodology and various applications of Bayesian nonparametrics. He has edited one book, written nearly one hundred papers, and serves on the editorial boards of the Annals of Statistics, Bernoulli, and the Electronic Journal of Statistics. He is an elected fellow of the Institute of Mathematical Statistics, the American Statistical Association and the International Society for Bayesian Analysis.

Aad van der Vaart is Professor of Stochastics at Universiteit Leiden. He is the author of several books and lecture notes in topics ranging from asymptotic statistics to genetics and finance, and many research papers in statistics and its applications. He is a member of the Royal Netherlands Academy of Arts and Sciences, former presid

EAN: 9780521878265

Package Dimensions: 10.2 x 7.2 x 1.5 inches

Languages: English